X-Ray Fluorescence (XRF)

What is X-ray Fluorescence?

X-ray fluorescence is an analytical technique that can be used to determine the chemical composition of a wide variety of sample types including solids, liquids, slurries and loose powders. XRF is also used to determine the thickness and composition of layers and coatings. It can analyze elements from beryllium (Be) to uranium (U) in concentration ranges from 100 wt% to sub-ppm levels.

Principles of X-Ray Fluorescence

XRF is an atomic emission method, similar in this respect to optical emission spectroscopy (OES), ICP and neutron activation analysis (gamma spectroscopy). Such methods measure the wavelength and intensity of ‘light’ (X-rays in this case) emitted by energized atoms in the sample. 

In XRF, irradiation by a primary X-ray beam from an X-ray tube causes the emission of fluorescent X-rays with discrete energies characteristic of the elements present in the sample.

Figure, right: Example of the X-Ray fluorescence (XRF) process: 1) Incoming photon 2) Characteristic photon.

Applications of X-Ray Fluorescence

XRF is a versatile analytical technique that finds application across an extensive spectrum of industries and scientific fields. Its adaptability and precision have made it an indispensable tool for understanding and manipulating the elemental composition of materials. From aiding in material identification and quality control in industries to preserving cultural heritage and advancing scientific research, XRF continues to play a pivotal role in enhancing our understanding of the elemental world.

Quality Control and Elemental Analysis

XRF is widely used in quality and process control. Users can quickly get accurate and precise results with limited effort on sample preparation, and it can be readily automated for use in high-throughput industrial environments. XRF’s precision and non-destructive nature make it an invaluable tool for quality control in various manufacturing sectors, such as: 

  • Metallurgy: In metallurgical processes, XRF ensures the integrity of alloys by confirming their composition. It’s a critical step in manufacturing products such as aircraft components, car parts, and structural materials.
  • Electronics: Electronics manufacturers employ XRF to inspect circuit boards, ensuring components’ adherence to strict elemental standards.
  • Cement: XRF is employed in the cement industry for analyzing raw materials and alternative fuels, as well as controlling the quality of the final product.

Research and Development

XRF plays a pivotal role in materials research and development:

  • Material Science: Researchers study the properties of materials and create new compounds (I.e., catalysts or coating materials) by precisely and accurately analyzing elemental composition.
  • Semiconductor Industry: XRF contributes to the development of cutting-edge semiconductors by ensuring the purity and composition of materials used in chip manufacturing.
  • Art and Archaeology: XRF helps conservators and archaeologists analyze pigments, ceramics, and artifacts, shedding light on their origins and authenticity.

Pharmaceuticals and Medicine

In the pharmaceutical and medical fields, XRF also has diverse applications:

  • Drug Analysis: It verifies the quality and safety of drugs and ensures they meet stringent quality standards according to ICH-Q3D. XRF is also used as a quick screening tool before the samples are analyzed by the more labour intensive ICP and AAS methods. 
  • Biomedical Research: XRF aids in studying trace elements in biological samples, offering insights into diseases and treatment.

Instruments with thoughtful innovations

Malvern Panalytical instruments’ have driven XRF innovation in several areas. Elemental analysis instruments can be energy-intensive and generate significant waste, but eco-efficient innovation from Malvern Panalytical has the potential to change this.

We also believe that an instrument should not be complicated to use just because it is powerful, so we have invested in user-friendly features that make method development and data quality management a breeze. With our XRF instruments, you benefit from the optimum combination of technological advancement, thoughtful flexibility, and sustainable performance.

No compromise on quality, speed, or accuracy

Speed or accuracy? There is often a dilemma with XRF spectrometers between quality data that is still usable and rapid results that are detailed enough. With our premium instruments, the trade-off between performance and speed disappears, thanks to innovative features and thoughtful design across our range.

We also offer innovative form factors for a variety of space requirements. Some of our portable and benchtop instruments have accuracy similar to floor-standing XRF instruments.

XRF instruments that can keep up with you

The XRF spectrometers of the past often struggled to keep up with the demands of an ambitious laboratory. Each sample method required extensive training, and the instruments often lacked the sample changer capacity for efficient measurement.

With our instruments, you can count on accurate results and high sample throughput, saving your lab valuable time. Fast feedback loops and a variety of monitoring features across our range further enhance your XRF efficiency by streamlining your workload and simplifying maintenance.

Advantages of XRF analysis

There are many ways to analyze elemental composition in quality control – ICP, AAS, and XRF, for example – and each technique has its advantages. But XRF has a particularly high number of advantages compared with other techniques.

Where alternative techniques often require destructive sampling for the analysis to work, XRF is fast and non-destructive. In addition, analysis can be done in air at the production site, and it’s typically more cost-effective than other techniques.

Blog Written by : Malvern Panalytical Ltd. 
(www.malvernpanalytical.com)

ProLab

Leave a Reply

Your email address will not be published. Required fields are marked *